draw_states.c 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. #include "draw_states.h"
  2. void draw_game(Game_Data *data)
  3. {
  4. //draw the player and the lines
  5. drawPlayer(&(data->cam), data->player_angle, data->nb_lines, data->line_transition);
  6. drawDiagonals(data->cam, data->nb_lines, data->line_transition);
  7. //showing the walls
  8. if(data->list != NULL)
  9. drawWalls(data->list, &(data->cam), data->nb_lines);
  10. }
  11. void draw_title(Game_Data *data)
  12. {
  13. PrintMini(20, 28, "Press EXE to begin");
  14. drawDiagonals(data->cam, 6, data->line_transition);
  15. }
  16. void draw_menu(Game_Data *data)
  17. {
  18. PrintMini(20,28, data->entry_difficulties[data->current_entry - 1]);
  19. drawDiagonals(data->cam, 6, data->line_transition);
  20. }
  21. void draw_game_over(Game_Data *data)
  22. {
  23. }
  24. //draws the player
  25. //at first, was supposed to draw an hexagon in the center, plus a triangle to show the player,
  26. //but the hexagon was not visible, and it was a pixel mess, so we're showing a circle instead.
  27. //there is still for code to calculate the vertices of the hexagon, in case we want to change that again
  28. void drawPlayer(Camera *cam, int player_angle, int nb_lines, Line_Transition line_transition)
  29. {
  30. int x[32];
  31. int y[32];
  32. int i = 0;
  33. int angle = 0;
  34. float tmp_angle = 0.0;
  35. float transition_angle = 0.0;
  36. float delta_angle = 0.0;
  37. if(line_transition.delta_nb_lines == 1)
  38. nb_lines ++;
  39. if(line_transition.counter_start != 0)
  40. transition_angle = (360.0 / (float)nb_lines) * ((float)line_transition.counter / (float)line_transition.counter_start);
  41. delta_angle = 360.0/nb_lines;
  42. do
  43. {
  44. x[i] = (8. + cam->zoom)*cos(PI * (tmp_angle + cam->angle)/180.) + cam->cX;
  45. y[i] = (8. + cam->zoom)*sin(PI * (tmp_angle + cam->angle)/180.) + cam->cY;
  46. i++;
  47. switch(line_transition.delta_nb_lines)
  48. {
  49. case 0:
  50. tmp_angle += delta_angle;
  51. break;
  52. case 1:
  53. if(i < nb_lines)
  54. tmp_angle += (360 - (delta_angle - transition_angle)) / (nb_lines - 1);
  55. else
  56. tmp_angle += delta_angle - transition_angle;
  57. break;
  58. case -1:
  59. if(i < nb_lines)
  60. tmp_angle += (360 - transition_angle) / (nb_lines - 1);
  61. else
  62. tmp_angle = transition_angle;
  63. break;
  64. }
  65. }while(i <= nb_lines);
  66. //draw the aforementionned circle, depending on the camera's center
  67. //ML_filled_circle(cam.cX, cam.cY, 6, BLACK);
  68. ML_polygone(x, y, nb_lines, BLACK);
  69. //draw the player. At such a low scale, it was impossible to draw a rotating triangle, so its a radius 1 circle instead.
  70. ML_filled_circle((9. + cam->zoom)*cos( PI*(player_angle + cam->angle)/180) + cam->cX, (9. + cam->zoom)*sin( PI*(player_angle+cam->angle)/180) + cam->cY, 1, BLACK);
  71. }
  72. //draws one of the three rotating lines
  73. void drawDiagonals(Camera cam, int nb_lines, Line_Transition line_transition)
  74. {
  75. int tmp_angle = cam.angle;
  76. float tmp_angle_rad = 0.0f;
  77. int i = 0;
  78. float x1 = 0.0f, y1 = 0.0f, x2 = 0.0f, y2 = 0.0f;
  79. float delta_angle = 0.0;
  80. float coeff = 0.0;
  81. float transition_angle = 0.0;
  82. delta_angle = 360.0 / nb_lines;
  83. if(line_transition.delta_nb_lines == 1)
  84. nb_lines ++;
  85. if(line_transition.counter_start != 0)
  86. coeff = (float)line_transition.counter / (float)line_transition.counter_start;
  87. transition_angle = delta_angle * coeff;
  88. do{
  89. tmp_angle_rad = tmp_angle * PI / 180.0f;
  90. x1 = 9.0f * cos(tmp_angle_rad);
  91. y1 = 9.0f * sin(tmp_angle_rad);
  92. x2 = 128.0f * cos(tmp_angle_rad);
  93. y2 = 128.0f * sin(tmp_angle_rad);
  94. ML_line(x1 + cam.cX, y1 + cam.cY, x2 + cam.cX, y2 + cam.cY, BLACK);
  95. i++;
  96. switch(line_transition.delta_nb_lines){
  97. case 0:
  98. tmp_angle += 360/nb_lines;
  99. break;
  100. case 1:
  101. if(i < nb_lines - 1)
  102. {
  103. tmp_angle += (360 - (delta_angle - transition_angle)) / (nb_lines - 1);
  104. }else{
  105. tmp_angle += delta_angle - transition_angle;
  106. }
  107. break;
  108. case -1:
  109. if(i < nb_lines - 1)
  110. {
  111. tmp_angle += (360 - transition_angle) / (nb_lines - 1);
  112. }else{
  113. tmp_angle += transition_angle;
  114. }
  115. break;
  116. }
  117. if(tmp_angle >= 360)tmp_angle = tmp_angle - 359;
  118. }while(i < nb_lines);
  119. }